Select region
Submit

Every patient comes with special challenges. Whether it’s a 300-gram newborn or an adult, someone suffering from acute respiratory failure or chronic pulmonary disease, the needs and complexities will differ. That is why we are committed to innovating personalized ventilation solutions that help protect the lungs and other organs, speed up weaning and support better outcomes.

Personalized lung protection - tools to individualize the treatment

Personalized lung protection – tools to tailor the treatment

To personalize patient-ventilator interaction and prevent ventilator-induced lung injuries, we offer a powerful toolkit for tailored lung protection. It includes tools like Servo Compass, Transpulmonary pressure monitoring, Open Lung Tool, Automatic lung recruitment and more. All designed to support you while adhering to hospital protocols.

Personalized weaning – tools to ease the transition to spontaneous breathing

Personalized weaning – tools to ease your patients off respiratory support

Stabilizing the patient, reducing sedation and easing the patient off the ventilator may require personalized weaning features. Our Servo ventilators offer a number of tools that may assist clinicians and patients in the weaning process. Like our NAVA ventilation mode, non-invasive NIV NAVA and High Flow oxygen therapy.

Getinge Servo ventilators

Find a personalized ventilation solution that fits your needs

With our Servo range, you can select just the right type of Servo ventilator for your specific patient, setting and hospital requirements. Flexible and easy to use, you can then further personalize the treatment with tools to help you reduce complications and wean earlier during invasive and non-invasive ventilation – from ICU to intermediate care, and for all patient categories.

Clinician in nicu ward adjusting Servo 900 ventilator beside neonate in incubator

The Servo Ventilator story

This is a story of a revolution. One that would change our perception of intensive care ventilation forever. A scientific wonder that captivated the medical world more than fifty years ago, and one that pioneered our understanding of personalized ventilation we know today. We called it the Servo ventilator. The world’s first flow-controlled ventilator with a rapid servo control system.

Why you will love to work with a Servo Ventilator

Increase patient safety

Reduce workload and limit use errors and close calls with a Servo Ventilator.[1]

Deliver optimal support

Wean patients earlier from mechanical ventilation with fewer complications and less sedation.[2] [3] [4]

Adapt to your needs

Provide quality ventilation for every situation and for patients of all sizes, from neonates through adults.

Secure your investment

Reliable performance, low maintenance and easy connection to your hospital systems.

Increase patient safety

choosing an easy-to-use mechanical ventilator has a positive impact on patient safety and staff workload

Keep your patients safer and reduce staff workload

A recent study in Critical Care showed that by choosing an easy-to-use mechanical ventilator you can positively impact patient safety and staff workload.[1]

 

"It's like having the manual in the machine."

Our user-friendly guidance is available in the Servo-u/n/air ventilators. It features on-screen informative text guidance on ventilation modes and settings; images showing how settings affect the ventilation; recommendations during alarms; Safety Scale; and much more. Learn more from the video. 

Deliver optimal support

Studies show that a number of ICU patients have difficulties breathing with a ventilator. These patients face several ventilation challenges [5] and consume a disproportionate amount of resources.[6] Scroll down to learn how we can help you meet these challenges.

Patient and nurse with Servo-u ventilator

Challenge: Avoid intubation in patients with respiratory failure

Non-invasive respiratory support can reduce the need for intubation and resulting complications such as ventilator-associated pneumonia (VAP),[7] excessive sedation,[8] delirium [9] and ICU-acquired weakness.[10] Non-invasive support allows patients to remain active, a strategy now adopted in many ICUs. Servo-u offers multiple options to support your patients with non-invasive therapies.

 

Challenge: Prevent ventilator induced lung injury (VILI) during controlled ventilation

It is sometimes necessary to take full control of the patient’s breathing. Barotrauma, volutrauma and alectotrauma are all potential consequences. But their incidence can be reduced.[11] Servo Compass is a tool, which helps you to see changes to driving pressure and tidal volume per kg of predicted bodyweight more easily; parameters strongly associated with survival.[12] [13] Learn more about Servo Compass in the video.

 

Challenge: Prevent ventilator-induced lung injury (VILI) during assisted ventilation

Studies have demonstrated that Neurally Adjusted Ventilatory Assist (NAVA) promotes lung protective spontaneous breathing with improved patient-ventilator synchrony and gas exchange.[14] [15] While on NAVA, the respiratory centers and reflexes in the lungs and upper airways will instantly limit tidal volumes when the lungs are overdistended. This gives patients the opportunity to choose their own tidal volumes and respiratory patterns, which may limit VILI.[16] [17]

 

Challenge: Avoid ventilator-induced diaphragm dysfunction (VIDD)

Diaphragmatic thickness can decrease by 21% after only 48 hours of mechanical ventilation.[18] Identifying diaphragm activity can be cumbersome,[19] but it doesn’t have to be. Monitoring the Edi-signal allows you to see the patient’s diaphragmatic activity, and NAVA personalized ventilation increases diaphragm efficiency with fewer periods of over- and under-assist.[20] [21] Watch the video to learn more about Edi.

 

Challenge: Avoid patient-ventilator asynchrony

Patients with high degree of asynchrony have worse outcomes and longer duration of ventilation.[22] [23] [24] [25] Patient-ventilator asynchrony also accounts for 42% of all sedation in the ICU.[26] Monitoring diaphragm activity (Edi) makes it easier to detect asynchrony, allowing you to adapt ventilator settings to your patient’s needs.[27] See how Edi works in the video. 

Two nurses standing next to a patient under servo-u

Challenge: Prevent delayed weaning

A recent study shows that 29% of patients experience weaning failure due to diaphragm dysfunction. It extends time on mechanical ventilation by up to 16 days.[18] But thanks to NAVA ventilation you can have a more comfortable patient with less sedation and an active diaphragm, which may help you promote early weaning.[2] [3] [4] Furthermore, monitoring diaphragm activity (Edi) can help you assess weaning readiness and monitor work of breathing during recovery, even when there is no ventilator support.[27]

Adapt your ventilation to every situation

Doctor with Servo-air ventilator

Freedom from hospital infrastructure

Turbine ventilation makes high-quality ventilation more accessible throughout your hospital, from the ICU to intermediate care. Servo-air is compatible with invasive and non-invasive ventilation.

MR Conditional Ventilator SERVO-u MR

MR Conditional Ventilation

Servo-u MR helps you ventilate all patient categories during MR scanning, from invasive ventilation to high-flow therapy. It also guides you to a safe position in the MR room, automatically locking all wheels once your hand leaves the handle.

Neonatal Ventilation with Servo-n

Neonatal intensive care unit

Help neonates breathe, sleep and grow. Our neonatal ventilation helps you minimize the challenges of tiny lungs, rapid respiratory rates and leakage.[28] [29]

Secure your investment and take the stress out of ownership

Cost-effective care

Servo Ventilators are easy to learn and use, have few parts to clean, and are easy to maintain, which promotes minimal training time and high staff efficiency.

Connected to your environment

Servo Ventilators connect to a number of PDMS systems and patient monitors.[1] An HL7 converter makes the system conform to IHE technical framework.

Smart fleet management

Similar look and feel between ventilators and interchangeable plug-in modules increase convenience and allows for high acuity ventilators to work alongside more mobile solutions.

Scalable service program

Our Remote Services help you monitor and access information on your fleet from any hospital computer. A line of original consumables and parts will keep your Servo Ventilator performing at its best.

  1. 1. Plinio P. Morita, Peter B. Weinstein, Christopher J. Flewwelling, Carleene A. Bañez, Tabitha A. Chiu, Mario Iannuzzi, Aastha H. Patel, Ashleigh P. Shier and Joseph A. Cafazzo. The usability of ventilators: a comparative evaluation of use safety and user experience. Critical Care201620:263.

  2. 2. Emeriaud G, et al. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 2014 Nov;40(11):1718-26.

  3. 3. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014 Jun;20(3):352-8.

  4. 4. Barwing J, et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013 Aug 28;17(4):R182.

  5. 5. Goligher EC1, Ferguson ND2, Brochard LJ3. Clinical challenges in mechanical ventilation. Lancet. 2016 Apr 30;387(10030):1856-66.

  6. 6. Jarr S, et al.Outcomes of and resource consumption by high-cost patients in the intensive care unit. Am J Crit Care. 2002 Sep;11(5):467-73.

  7. 7. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416.

  8. 8. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471-1477.

  9. 9. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291 (14):1753-1762.

  10. 10. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014; 370(17):1626-1635. Slutsky AS. Neuromuscular blocking agents in ARDS. N Engl J Med. 2010;363(12):1176-1180.

  11. 11. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2014 Mar 6;370(10):980.

  12. 12. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000 May 4;342(18):1301-8.

  13. 13. Amato et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):747-55.

  14. 14. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L: Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999, 5: 1433-1436. 10.1038/71012.

  15. 15. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre P-F, Jolliet P, Tassaux D: Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011, 37: 263-271. 10.1007/s00134-010-2052-9.

  16. 16. Brander L, Sinderby C, Lecomte F, Leong-Poi H, Bell D, Beck J, Tsoporis JN, Vaschetto R, Schultz MJ, Parker TG, Villar J, Zhang H, Slutsky AS: Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med. 2009, 35: 1979-1989. 10.1007/s00134-009-1626-x.

  17. 17. Patroniti N, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012 Feb;38(2):230-9.

  18. 18. Kim et al. Diaphragm dysfunction (DD) assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011 Dec;39(12):2627-30.

  19. 19. Schepens T, et al. The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care. 2015 Dec 7;19:422.

  20. 20. Cecchini J, et al. Increased diaphragmatic contribution to inspiratory effort during neutrally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014 Nov;121(5):1028-36.

  21. 21. Di Mussi R, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016 Jan 5;20(1):1.

  22. 22. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during mechanical ventilation: prevalence and risk factors. Intensive Care Med 2006;32(10):1515–1522.

  23. 23. Tobin MJ, etal. Respiratory muscle dysfunction in mechanically ventilated patients. Mol Cell Biochem 1998;179(1-2):87–98.

  24. 24. Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care 2001;7(1):28–33.

  25. 25. Blanch L, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015 Apr;41(4):633-41.

  26. 26. Pohlman MC, et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008;36(11):3019–3023.

  27. 27. Colombo D, et al. Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med. 2011 Nov;39(11):2452-7.

  28. 28. de la Oliva, Schuffelmann C, Gomez-Zamora A, Vilar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA vs pressure support in pediatric patients. A nonrandomized cross-over trial. Int Care med. Epub ahead of print April 6 2012.

  29. 29. Beck J, Reilly M, Grasselli G, Mirabella L, Slutsky AS, Dunn MS, Sinderby C. Patient-ventilator interaction during neurally adjusted ventilator assist in very low birth weight infants. Pediatr Res. 2009 Jun;65(6):663-8.

Dear visitor, please note some solutions, products or features may not be available in Canada. For more specific information, please contact us.